Assessing of Soil Quality Index by Scoring Function Analysis in Ohio

Toru Nakajima and Rattan Lal The Ohio State University /School of Environmental Research/ Carbon Management and Sequestration Center

INTRODUCTION

Soil quality index (SQI) is a tool for assessing the impact of land use and management practices on soil properties. Soil quality refers to the capacity of soil to provide goods and service for a specific use. Because management practices lead to changes in soil function, there is a need for comprehensive tools and methods to assess and SQI. In this research, our objective is to evaluate the effects of tillage and surface tile drainage on SQI of Crosby Silt Loam in Central Ohio.

MATERIALS AND METHODS

The SQI assessment was carried out using the scoring function analysis framework that has been found to perform well for managements effects (Karlen et al., 2001). Crop productivity was identified as the management goal in the study.

Fig. Conceptual framework for scoring function analysis

Three main steps were followed for the SQI assessment:

- 1) identification of the minimum data set of indicators,
- 2) indicator interpretation,
- 3) integration of the all indicator scores into one overall SQI

Table. Scoring function chart for interpretations soil quality index with source references

Fig. Conceptual framework for integrating SQI.

Table.	2 Weighting	factor for	soil function	and indicators
lanc.			Son function	

 $=\frac{\sum_{i=1}^{n}(W SQI_{i})}{\sum_{i=1}^{n}(W SQI_{maxi})}$

Function	Weight	Indicators	R	Weight Index	Depth	NT	СТ
Physical	0.33	K _{sat}	0.70	0.16	0-10cm	0.52	0.65
		Soil M	0.57	0.13			
		BD	0.55	0.13			
		AWC	0.51	0.12	10-20cm	0.22	0.17
		Soil T	0.42	0.10			
		Texture	0.15	0.03			
		MWD	0.09	0.02	20-40cm	0.17	0.11
Chemical	0.33	SOC	0.61	0.14			
		EC	0.23	0.05			
		рН	0.06	0.01	40-60cm	0.10	0.06
Biologcal	0.33	MBC	0.41	0.10			
Total	1.00			1.00		1.00	1.00

RESULTS AND DISCUSSIONS

- \checkmark K_{sat} was the key indicator $(W_{indicator} = 0.16; n = 48)$ for SQI assessment,
- ✓ SOC had the highest weighting index ($W_{indicator} = 0.14; n = 48$).
- ✓ The SQI were not significantly affected by tillage and subsurface drainage treatment (P = 0.380and 0.763),
- ✓ The root densities of each depth under different treatments in corn field were employed to determine the weighting factor of depths in this study. Thus, it seems to be an effective way to integrate and evaluate the whole depth.
- ✓ The SQI was significantly correlated with corn yield (R =0.62, P < 0.05; n = 12),

yield (2011)

CONCLUSIONS

This research suggested that the SQI assessment can be an effective and useful tool for assessing the agronomic productivity in central Ohio.

However, we recommend that more long-term studies be conducted to assess the effects of tillage and drainage management on SQI.

BIBLIOGRAPHY

- method. SSSAJ.

This research is part of a regional collaborative project supported by the USDA-NIFA, Award No. 2011-68002-30190 "Cropping Systems Coordinated Agricultural Project (CAP): Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems" sustainablecorn.org

United States Department of Agriculture National Institute of Food and Agriculture

Fig. Relationship between SQI and the corn yield and stover

Andrews, S.S.et al., 2004. A quantitative soil quality evaluation

Karlen, D.L., 1997. Soil Quality: A Concept, Definition, and Framework for Evaluation, SSSAJ.